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The relaxation from an intrinsically unstable state to the metastable state of a bistable system, which is
driven by colored noise, is investigated in the weak-noise strength D and general correlation time 7. The
influence of 7 on the relaxation of the system is discussed.
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I. INTRODUCTION

Systems driven by colored noise have recently activat-
ed a great deal of interest [1-15]. A generic and widely
studied system is a bistable system described by the
Langevin-like equation

x=ax —x3+&(1), (1.1)
with a >0, (£(¢))=0, and
<§(t)§(t')>=€exp(—lt—t’l/r) . (1.2)

The noise £(¢) itself undergoes an Ornstein-Uhlenbeck
process, i.e.,

E)=—y&n)+T(1), (1.3)
where

(T(1))=0, (T(OI(t"))=2Dy?8(¢t—1t'), (1.4)
and

y=1/7. (1.5)
We denote

E()=y(1); (1.6)
then (1.1) and (1.3) are changed into

x=ax —x3+y, p=—yy+T). (1.7)

Thus, the Fokker-Planck equation (FPE) corresponding
to (1.7) reads

oP _ 4

9 o’
—x3+ +——(yyP)+Dy*——P .
or 3y L(@x —x +y)P] ay(yy )+Dy 3’

(1.8)
The central difficulty of solving Eq. (1.8) is that such a
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FPE does not possess an explicit analytical expression,
even for the stationary solution.

A general way to deal with this problem is to project
Eq. (1.8) into an effective one-dimensional FPE, which
can be written as

OP(x,t) _ _ 9

62
o1 ax[C(x)P(x,t)]—{— axz[D(x)P(x,t)] .

(1.9)

Several well-known approximations of such type have
been suggested; we here list some of them.

(i) Small-7 expansion [11]:

Cx)=f(x)=ax—x3, D(x)=D(1+7f"). (1.10
(ii) Unified theory [5,15]:
Cx)=[f+Drf"/A—=1f*1/(1—1f"), 1D
D(x)=D/(1—7f")*.
(iii) Functional-calculus approximation [4]:
C(x)=f(x), D(x)=D/(1—71f"). (1.12)
(iv) Decoupling approximation [5]: .
C(x)=f(x), D(x)=D/(1—7(f")). (1.13)

In the last one, the average is to be taken over the un-
known stationary distribution P (x) self-consistently.
These effective approaches have been successfully used
to produce the stationary probability distributions of the
actual system in a wide range of correlation time 7
[14,15]. However, the problem of whether these effective
FPE’s correctly describe the relaxation process has not
been carefully studied. In spite of the fact that the mean
first-passage time (MFPT) has been extensively discussed
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[15], the problem of the evolution from an intrinsically
unstable state to the metastable state in a colored-noise-
driven system is rather seldom considered. In this paper,
we are involved in the time-dependent problem of the
FPE (1.8) in the weak-noise limit and for an arbitrary
correlation time.

In dealing with the time-dependent problem, the Q ex-
pansion theory (QET) [16,17], and the scaling theory (ST)
[18,19] are often used. The QET is successful in describ-
ing the evolution of the system from an extensive region
to a stable state, while failing in the region near an unsta-

" ble point [16,19,20]. The ST is remarkable in characteriz-
ing the evolution from a one-peak distribution to a two-
peak one, starting from an unstable point, but it has some
trouble with the matching between various time regimes
[18,20]. We here apply an approach called linear Q ex-
pansion of a Green function (LQEGF), which is suggest-
ed in [20-25], to discuss the relaxation of the colored-
noise-driven system from an intrinsically unstable state to
the metastable state. The result will be compared with
those of the effective FPE’s.

II. FROM AN UNSTABLE STATE
TO THE METASTABLE STATE

A. General formulation of the LOEGF

Because the QET is invalid near the unstable point, the
central task is to get rid of this trouble. To do this, Hu
and Zheng for the first time suggested a method named
LQEGF in Ref. [20]. The basic idea of this method is as
follows.

(1) First, linearize the nonlinear drift term of the FPE
around the unstable point, and solve the corresponding
linearized FPE. In the weak-noise limit, this solution is
a good approximation of the evolution of the real system
in the initial time regime ¢ <t; here ¢, can be determined
according to the specific model [see Refs. [20] and [24]
and Eq. (2.8) in the present paper].

(2) In the time region around ¢, both the linearization
approximation and the Q expansion of the Green func-
tion are valid at the same time. Then, by using the linear
approximation solution as the initial condition at time ¢,
the Q-expansion procedure to the Green function is per-
formed; that produces the time evolution of the system
up to the metastable state.

Following this procedure, we now consider the evolu-
tion of a colored-noise-driven system, which has been
given in Sec. I, from an initially unstable state to the
metastable state. Assuming that y is initially in its equi-
librium distribution and x is located very near the unsta-
ble point (we locate x at x =bV D), so the initial distribu-
tion of the probability is prepared as

P(x,y,0)=V1/27Dy8(x —bV'D exp(—y%/2Dy) ,
2.1)
with
b=0(1),

D<<1. (2.2)

We first linearize the drift force in (1.8), leading to the
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following FPE:

ap__ 2
at dx a

The time-dependent solution of (2.3) with the initial con-
dition (2.1) reads [26]

(2.3)

1 1/2
P(x) yt)=_— R ——
¢ 27 | day05—al
Xexp{[as(x —a;)*—a,(x —a;)(y —a,)
+a3(y —a,)?]/(dasas—a3)} ,  (2.4)
in which
a,=bvDe*, a,=0,
__ —2at _,—laty) 2at
a=-p |-t U o)
2a v+a Y —a
a4=£’L(1_e(0—y]t)’ assz .
Y—a 2

Later we will use this explicit solution as the initial condi-
tion when the ) expansion procedure to the Green func-
tion is performed, and one will see some interesting con-
clusions can be drawn from it.

In the initial time regime

exp(2at)<<1/D , (2.6)

the solution (2.4) is a good approximation of the actual
evolution of (1.8). In the case of

exp(2at)>>1, 2.7

most of the probability flows out of the unstable region
and then the Q expansion of the Green function is desir-
able. Since D << 1, one may readily find a suitable time ¢,
satisfying

1 <<exp(2at,)<<1/D , (2.8)

that the linearization of the drift and the () expansion of
the Green function hold simultaneously [20-25]. The
Green function of the system derived from Van
Kampen’s 2 expansion is

G(x,y,t)=exp{— [T —T()]Jo " [T'—T'(t)]/2Dy?}

X[27Dy?|det(0)]/?]7 1, 2.9)
where T and T(t) are two-dimensional vectors
T=(x,y), T(t)=[x(t),y(1)], (2.10)

and T',T'(t) are their transpositions, respectively. o is a
matrix:

(1) 04 (2)

T oy o,

) (2.11)

of which the elements satisfy
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0., =2(a—3x%0,, +20

xy
6, =0, +a—3x*~y)o,, , (2.12)
Oy ="2y0,,+2,
and x (¢) and y (¢) are the solutions of
x(t)=ax(t)—x(t)>+y(1),
(2.13)

y)y=—yy(),

P(x,y,t)=ffdxsdys[47r2(4a3a5~a§)]*1exp{[a5(xs—a1)2

X[27Dy?|det(0)|'?) lexp{ — [T —T()]Jo " [T"—T'(t)]/2Dy?*} ,

where a; (i =1, ...,5) are their values at time ¢,.

As discussed above, the actual solution of (1.8) can be
approximated by (2.4) at ¢ <t; and (2.15) at z>¢,. By
careful verification, we find that the integral (2.15) recov-
ers (2.4) at ¢ <t, (for the details of this matter, one can see
Refs. [20] and [24]); thus, Eq. (2.15) provides the evolu-
tion of (1.8) from an intrinsically unstable state to the
metastable state in the weak-noise limit. The problem of
solving a two-dimensional FPE is reduced to the problem
of solving the corresponding ordinary differential equa-
tions of (2.12) and (2.13), which are much easier than
(1.8).

The efficiency of the LOEGF method has been already
verified for a one-dimensional bistable system subjected
to a white noise in Ref. [20], where we use noise strengths
D =0.01 and 0.05, which are not so small and are very
practical for real physical-chemical systems. In Ref. [20],
the coincidence between the exact numerical simulation
and the analytical solution by LOEGF is really striking.
Nevertheless, this fact has not been verified for the two-
dimensional case. By comparing the direct numerical
solution of Eq. (1.8) with the integration of Eq. (2.15), one
can test the efficiency of the approach. We expect that
the LOEGF will also give an accurate prediction of the
actual P(x,y,t).

B. Reduction of dimensions

Expressing (2.4) by the following form:

P(x’,y',t)=[477'2(4(13055—Ot‘zt)]*1

Xexp(—x"*/s —y?/w), (2.16)

is very convenient for understanding the feature of the
probability distribution in the initial time region. In Eq.
(2.16), we use the following transformation:

x'=[(x—a)+kiyl/(1+k2)V?,

2.17)
y'=[(x—a)+kyl/(1+k?)?,
where
ki, =(as—a3)/at[(as—a3)?/ai+1]"2,  (2.18)
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with the initial conditions

x(t,)=x, , y(t,)=y,,
(2.14)
O (t)=0,,(t,)=0,,(2,)=0.

Taking (2.4) as the initial distribution of (2.9) at z;, we
finally arrive at

—ay(x, —a))y, +apl]/(dasas—ad)}

(2.15)

[
and
s=—2{ast+as;+a,[(as—ay)?/ai+1]1"2}
w=——2[a5+a3—a4[(a5—-a3)2/a§+1]1/2}. 21

It is obvious that k] (=1/k}) varies with time, and the
diffusion ellipse of the linear regime will rotate with time

[25]. In the time region that satisfies
1 <<exp(2at,) <<1/D, we have
ky>1, kj<<1,
s~—2ay=~Dye*/laly+a)], (2.20)
w=—2as=Dy,
which indicate that
x'=x, y'=y, w<s. (2.21)

This means that the diffusion ellipse develops, at time ¢,
into a very narrow strip, which is much more elongated
in the x direction than in the y direction, and thus the
probability is practically distributed in one dimension.
Therefore, we can treat (2.13) as a one-dimensional prob-
lem, i.e., the reduction of dimensions is practical [23-25].

Since the probability diffusion along the y axis can be
neglected in comparison with that along the x axis, we
can consider that the center of the Gaussian distribution
of (2.9) is on the x axis, and then we reduce (2.13) into

y(6)=0, x(t)=ax(t)—x(1)*, (2.22)
and their solutions are
(1)=0,
g (2.23)
x(1)>=—aC exp(2at)/[1—C exp(2at)] ,
where
C=x2exp(—2at,)/(x2—a) . (2.24)

By using (2.22) or (2.23), (2.12) can be solved with solu-
tions
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o, ()={1—exp[2y(t,—2)]} /v ,

X
o, (t)=exp(—yt Max(£)—x(2)*]

xft:dt o, (exp(yt)/lax()—x(1)*],  (2.25)

0 ()=[ax(t)—x(2)’]?

><ft:Z[ax(t)~x(t)3]"20xy(t)dt .

Thus, the two-dimensional FPE reduces to an integration
with the integrant known explicitly.

The adiabatic approximation principle is widely used
to reduce the dimensions of the problem. For the details
of the application of this procedure to the colored-noise-
driven system, one is referred to Refs. [12] and [13],
where dimension-reduced FPE’s were presented. Here
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the reduction of dimensions is applied for the relaxation
from an intrinsically unstable state to the metastable
state; the mechanism underlying the reduction is that, in
the vicinity of an unstable point, the most unstable mode
controls the system. (For the details, one is referred to
Ref. [24].)

C. The probability distribution of the metastable state

As t — o, from (2.22) and (2.12) we obtain

P(x,p,00)= fdxs(477'a3)_1/2exp[ —(x,—0a)*/4a3]{[2ay(2a +7)*1'? /27D y?)

X {exp[—a(2a +y ) x+V'a )?/Dy*+2a(2a+y)x+Va )y /Dy*+(2a +y)y*/2Dy?]

+exp[ —a(2a+y)(x —Va */Dy*+2a(2a+y)(x —Va )y /Dy*+(2a +y)y/2Dy?]} ,

Thus, the final amount of probability acquired by the po-
tential well of positive x reads

pt=["~ (1/m)%exp(—v3)dv ,

_ (2.29)
—bV2a(l+ar)/2

while the potential well of negative x acquires

—bV
po= [ R ) ek — o)y =1— P .

(2.30)

If 7=0, (2.29) and (2.30) return to the result of the white-
noise case (see Ref. [24]). It is interesting to point out
that the validity of (2.29) and (2.30) is guaranteed by the
weak-noise condition D <<1, but it is applicable to the
case of arbitrary 7. We can immediately find from (2.29)
and (2.30) that the correlation time 7 strongly affects the
probability distribution of the metastable state. If b >0,
i.e., the initial § function is located in the positive side of
the saddle point, the probability acquired by the potential
well of x =V'a will increase as 7 increases. When 7— oo,
almost all probability is obtained by this well, though the
position of the initial 6 function is not changed.

III. CONCLUSIONS AND DISCUSSIONS

In this paper, we use the LOEGF to obtain a time-
dependent solution of the FPE (1.8) with a bistable poten-
tial in the presence of colored noise in the weak-noise
limit and arbitrary correlation time. By comparison, we
discuss here the transient properties of the well-known
effective FPE’s listed in Sec. 1.

Integrating (2.4) over y, we obtain
P(x,t)=exp[ —(x —a,)*/4a3]/V 47a; , (3.1)

in which a; and a; are given in (2.5). Given f(x)=ax in

x()?=a, (2.26)
L 2a(2a+y)* 2a(2a+vy)
o) = 2a(2a+7y) 2a+y ’ (2.27)
and
(2.28)

[

Egs. (1.10)—(1.13), the solutions of the effective FPE’s can
be written in the following form:

P(x,t)=exp[ —(x —B)*/4a)/V'4ra , (3.2)
with
(i) a=—D(y+a)1—e?*)/2ya, B=x(0)e®, (3.3)
for the small-r expansion;
(i) a=—Dy{l—exp[2ayt/(y—a)l}/2aly —a), 3.4
B=x(0)exp[ayt/(y—a))]
for the unified theory;
(ili) a=—Dy(1—e?**)/2a(y—a), B=x(0)e™ (3.5
for the functional-calculus approximation; and
(iv) a=Dy(1—e?*)/2a(y —a), B=x(0)e® (3.6)

for the decoupling approximation.

Thus, in the linear case, by comparison of (3.3), (3.4),
(3.5), and (3.6) with (3.1), we conclude the following.

(a) For a <0, (3.3), (3.5), and (3.6) give correct charac-
teristic relaxation times in the small-7 regime, while giv-
ing wrong ones in the large-7 regime. The unified theory
produces incorrect results both in the characteristic time
of variance a and the motion of the probability peak
center f3.

(b) For a >0, all the above effective FPE’s produce
wrong relaxation behaviors of the system, even in the
small-7 regime.

Actually, in the linear case, an exact effective FPE has
been derived by Fox’s functional calculus [4], which is
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82

P _ 3 (qup)+ BV (1 _oa-r1 9 p 379
ox Y—a ax?

at

where P(x,t) also takes the same form as (3.2), with

l_eA(a+y)t l_e—lat Dle2at
Y +a 2a Yy—a B

[3’=x(0)e2‘" ,

a= — as ,

(3.8)

which is identical to our two-dimensional treatment.

As for the metastable state of the bistable model, we
calculate, from (1.10), the probability gained by the two
wells:

pr=[" __ V1/mexp(—v2)dv , (3.9)
—bV2a/(1+a1)/2
P =1—-P%", (3.10)

and from (1.11), (1.12), and (1.13), we obtain

t=[" —v)dv , 3.11
P —bV'2a(1—ar)/2 1/7T6Xp( v ) v ( )
P =1—-pt, (3.12)

where we assume x(0)=bV'D. Comparing (3.9), (3.10),
(3.11), and (3.12) with (2.29) and (2.30), we can easily find
that, only when 7=0, they come to the same result,
which is just that of the white-noise case [20]. Thus, all
the effective FPE’s described above produce incorrect re-
sults of the relaxation from an intrinsically unstable state
to the metastable states, even for small 7, because of the
wrong correction terms, though they produce good ap-
proximations of the stationary distribution.

In this presentation, we have considered only the evo-
lution from the intrinsically unstable state to the metasta-
ble state. In the weak-noise limit D << 1, the metastable
state has an extremely long lifetime and is a practical
state observable. The probability evolution to the sta-
tionary state have been analyzed, for instance, in Refs.
[14] and [15]. It is found that, for strongly colored noise,
a probability “hole” may occur in the vicinity of the ori-
gin, which essentially influences the first passage time as
well as the evolution from the metastable state to the sta-
tionary state. Nevertheless, this interesting fact is
beyond the scope of our present paper.
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